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	 ABSTRACT
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We present a new descriptive statistic for channels

with memory and show its utility (a) in evaluating and
r

comparing existing models for such channels, and (b) as
a theoretical tool in defining the error-gap distribution

characteristics of real channels. We demonstrate that

certain kinds of real channel behavior cannot be adequately

t	 described by previously proposed models and offer an ex-

ample of a better model which includes many of the earlier

models as special cases.
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I. Introduction

In recent years many models have been proposed to

characterize the error sequences encountered in real
digital communication links [1-10]. For the most part these

models have been developed to represent certain exper-

mentally measured ,statistics, though inferences are often

made about their applicability to more general situations.

Unfortunately it is not always easy to ferret out all of

the implicit assumptions about a model in order to de-

termine its applicability to a specific channel. Further-

more, different models which apparently represent the

same channel can lead to different conclusions about the

behavior of communication processes. Thre reason is that

the models do not in reality adequately represent some

statistic which is critical in the analysis.
C

	

	
To circumvent such difficu l ties in this paper, we ex-

amine a number of basic properties which a model must

satisfy if it is to adequately represent a real channel

or class of real channels. A consequence of our analysis

is the demonstration that certain kinds of real channel

behavior cannot be properly described by previously

developed models. We then offer an alternative model

as an example. This model is a function of a slowly

spreading Markov chain and coincidently includes many

of the previously proposed models as special cases.
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Though a number of important statistical proper-

ties of real channels are uncovered in the following

analysis, it is by no means exhaustive. It should,

however, go a long way toward the improvement of the

process of selecting models to represent various

classes of real communication channels. It should also

lend insight into the varied behavior of real channels.

Consider the channel model shown in Figure 1.

,.	 It consists of an input and output alphabet whose sym-

bols are the q elements of the Galois field GF(q).

Between the input and output the channel introduces a

random discrepancy which is represented mathematically

as the addition of a noise symbol, i.e.,

yi = xi + ni	(1)

whPxe y i and x t, are respectively the output and input
symbols, n  is the noise symbol which is also an element

i
of GF(q) and "+" is addition over the same field.

The noise sequence {ni } can be thought to originate

from a hypothetical random generator called the noise

source. Throughout it will be assumed that the input

sequence {xi} and noise sequence {n i } are statistically

independent of each other, implying that the statistical

properties of the channel are exhibited in the statis-

tical properties of the noise source.

Whenever n  is different from zero, an error is

said to occur. In this way the error source is dis-

tinguished from the noise source. The channel error

K	 source generates the error sequence {ei} which is a

mapping of the noise sequence (n.} onto (0,1), i. e.,
i_	 0 if n . =0	 (2)_e (ni)	

1 othelrwise .
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In the common case of binary transmission the noise

and error sequences are equivalent. Both the error

source and noise source are discrete-time, stochastic

processes.

II. The Error-Gap Process.

The state space of the error process is composed

of two states: "Error" or 11 1" and "Error Free" or "0" .

A positive integer exponent is used to indicate the

number of consecutive symbols of the same type. In

 this notation the sequence 10000000010001100 is written
-	 as 10 9 101202.

In probability expressions we use the notation,

Pr (e =0,. 	 e l=0, ... , en	=0,	 en=1}	 W P (O
n-1 

1)	 (3)1

A conditional probability is also written in terms of

sequences say Pr{sequenceBisequenceA).	 If no other

indication is given in the conditional part, it is
understood sequence B directly follows sequence A.

Sequences of zeros between two errors ( " 1 " states)

are called error gaps (also error-free runs). 	 The

length of a gap is defined as one plus the total number

of zeros in the sequence between two 1 1 9.	 By defining
the gap length in this way the sum of all gap lengths

the total length	 theequals	 of	 error sequence.

Corresponding to the error process, the gap process

{G }	 be introducedcan	 by treating the binary, error
n

process as a succession of gaps of length G n .	 The state

space of this new process is the denumerable set of

positive integers.

4
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The probability

Pr (G n =ml  = P (Xn+l= 0, ... 
Xn+m 

l 0, Xn+m = l Xn= 1) (4)

for all positive integers m is called the error gap

probability mass function (EGPMF) .

Assuming stationarity we have 
^

Pr{Gn=m} = P(0 
m_1 11 1) .	 (,.)

Let

F (m+l) =pr{Gna m+l} = P ( O m { 1) .	 (6)
where

P (Om ) l ) k=m P ( Ok1 I 1 ) •	 (7)

t
i

{
t

c P (Om 1 1) is called

tribution (EGD) .

that P ( O m , 1) is a

Moreover P(Omlll)

tion

the error-gap or error-free run dis-

From the definition it is observed

monoton^.cally decreasing function of m.

= P (Om I 1) - P (Om+l 11) and the expecta-

i#

c y'

•
E (G ) _	 (m+1) P (Oml 11)

n M=O

a
=o (m+l) [ P (Om I 1) - P (Om+l 1) ]	 (8)

m
^.^ P (O'l 1) _ i 

P 
(__ 1Q) .

-m=o	 m=o P(l)

From the stationarity assumption it follows that

P(10 i )  = P (0 1 1) . As P (O 1 1) is the probability that

beginning with any symbol in the error sequence the

first error will not be encountered for i symbols, the

events i = 0, 1, 2, . . . are mutually

5
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exclusive and exhaustive, Thus if and only if
z	 P (0`1) 

= 0,
^i

r

mLo P (10')	 1 .	 ( g)

Therefore

M

E ( G )	 E	 P '( 10	 =1	 (10)n	 m=o	 P (1)P (1)

^e

where P(1) is the probability of error and is equal to

E(en).	 For real channels the probability of an error

is greater than zero, which implies that

E (ir.:mho p (o' 1 1)	 M,	 ( 11)

^a
E(Gn) is the expected number of symbols between two

errors, i. e., the average number of symbols which will

be transmitted before the recurrence of an error. 	 Con-

sequently, when E(Gn) exists and is independent of n,
a w

it will be called the recurrence time, Rt .	 On the average,

the number of non-errors associated with a single event

G 	 is Rt , which implies the number of events in the

corresponding gap process is reduced by a factor R
t

over the number of events in the binary 	 error process.

MFor good communication channels the probability of

error, P ( 1), is smaller than 10-3 which means R t a 103.

For such channels the number of events dealt with in

the corresponding gap process is reduced by a factor of

at least 10 3 over the events in the error process.

6
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III. The Descriptive Statistic.

x°

We now introduce a new statistic, defined as the

slope of the error-gap distributionp lotted in logarith-

mic coordinates. We show how it can be used

{ (a) in evaluating and comparing existing models both of

the generative and descriptive type, and (b) as a theo-
retical tool in defining the error-gap distribution

characteristics of real channels.

tw The error-gap distribution is often determined

curing the measurement of channel statistics. Consider

a monotonically decreasing continuous function P (Omll)

which for all non-negative integers m is equal to P(Omll),

a sketch of P (Om l l) as a function of m is shown in
Figure 2. Suppose this function is plotted in logarith-

mic coordinates as follows:

w	 y = loge P(Om 1 1),	 (12)

X = log em.	 (13)

Now define the function

(x)^ - d x	 (14)
dx

Note that in this x-y coordinate system, the terms of the

harmonic series, i.e., P(Om 11)	 1 , fall on a straight

line of slope equal to -1.	 m

Now it is an elementary fact that if Jam ` s cm

for m a m*, where m* is some fixed integer, and if

EC  converges, then Eam converges. Also, for non-
negative am, if amt dma 0 for m 2 m*, and if Ed

diverges, then Enm diverges. But, as just demonstra-

ted in (11) for real channels E ( n) < •.
7
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Therefore any model having an EGD P (Om I 1) <1/m (l+E) , with

E>0 a fixed constant, after some value of m=m*, will have an

x-y characteristic which is asympotically less than -1, as

shown in Figure 3, and will satisfy Equation (11). The condi-

tion that an error source model have an a -function which is

asymptotically greater than 1 is sufficient to guarantee

convergence of E(Gn). A necessary condition for convergence

is obtained in Section VII.

Since P(Omjl) is always a monotonically decreasing

_.	 function of m, the slope of P (O m) 1) will always be negative,

implying Y (x) will be a non-negative function of x. The

n -function for the harmonic series equals unit for aq	 y o 11

values of x, and so if P (Om l 1) <l/m ( 1+E ) for all m>m*, the

n-function w'	 >	 *_ion ill _fall in the region a (x) 1, for x>x	 log®m .

III.	 The x-Function of Some Special Models
r-

Therecedin	 considerations suggest that real channelsThepreceding	 gg

might be expected to yield a -functions which asymptotically
t

take on values greater than	 1.	 Examination of the a -function
n>

of some models proposed to represent real channels will bring

to light some interesting behavior.

Binary Symmetric Channel

The simplest model and the one most commonly used to

represent error sequences is the Binary Symmetric Channel

(BSC).	 If p = 1-q is the probability of an error of either

type (1-0 or 0-►1) 	 P (Om 1 1) = qm and y = log	 (Om 1 Q =m logeP	 eq.

Since x = log m, m = ex and y = ex log q, we have
e	 e

j	 9
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(X) = 
-dX = ( log e

 q) ex

t

(15)

The factor log el/q i g positive and constant, and so the

BSC has an exponential n-function.

Pareto Model

Berger and Mandelbrot[3] proposed a model with an EGD

given by a Pareto distribution, i.e., they let

P (0m1 1) =1 e 	 (16)
m

where A is a positive constant. Computation of

'Y (x) for this case yields the value A.

.	 The authors of [3] claim that for small m, the Pareto

distribution is a good approximation to actual measured

distributions. From experimental measurements they found

values of @ = 0.5 as t^ ?ical. Sussman [ 11] also found

values of A = 0.11 and 0.3 to represent some channel

•	 measurements.

The previous discussion showed channels with

x^ a(x)<1 do not have finite recurrence times, since

the szries 
m 

P(Om `1) diverges. Berger and Mandelbrot

resolved this problem by letting 8 take on a new constant

•_ *.value greater than unity at some point m - m the point

m* becomes a parameter of the model. In our terminology,

10
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they assume that for values of x greater than x* • logem*,

a takes on a constant value greater than 1. This is illus-

trated in Figure 4 along with the q -function of the harmo-

nic series and the BSC.

Finite-State Markov Models

A state	 for themodel discrete-time errors binary,

process is a set of states together with a mapping 9.

from these states onto the set (0.1). -1
 The function cp

brings about a partitioning of the state space:	 those

states *.which are mapped into 0 and those which are mapped

into 1.

Gilbert [1] initiated the application of finite-state

Markov Models to the representation of error sequences by

proposing a model composed of a good stateP "G", which is

error-.free, and a bad state "B", in which the channel has

,. only probability h to be in error. 	 If theY P	 Y state sequenceQ

is represented by the discrete-time process
{Zi}, 

then the

transitionrobabilities between states areP defined b Y
i

l'.

=	 •Pr{ Z EG Z	 EB}
	 P n	 n-1

(17)

_Pr{ Z EB I Z	 EG}	 P.
n	 n-1

The model is shown in Figure 5A.

Since even in the bad state there is a probability

of having no error, the mappinq 9 cannot be directly applied.

However, the Gilbert model can be transformed into a three-

12
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state Markov chain as shown in Figure 5B; the new states

are called G, B0 and B 1 . The function T mapping the states

w	 onto the error sequence, can be defined as:

T (G) = 0, cp ( B0 ) = 0 and 9 ( B 1 ) = 1 •

r Thus only B1 is an error state.

Fritchman [8] extended Gilbert's results by studying

the general case of finite-state models (Figure 6) with k
error-free states and N-:k error states.	 For such models he

showed that the EGt can be written as

km	 mP (0	 1) _ 	 f MX i , (18)

t

where X, are the eigenvalues of the matrix of transitioni
probabilities among the k error-free states and f(i) is

a function of the transitionrobabilities among allP	 g states.

t. Ordering the set X i by decreasing magnitude, i.e.,

2) Ak l , for large m and aperiodic chains

' we get asymptotically

P(Om I 1) — f(1) e lm. (19)

Consequently

Y = log	 (Om 1l) —  loge f (1)	 + m log %1eP	 ®
(20)

since m = e ,

y= —exloge X	 + logef (1) (21)

and
1x

X = -dx ~ ^og	 e
( 22)ek J1

13
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This demonstrates that, regardless of the number of states,

an aperiodic finite-state model always yields an ar- function
which is asymptotically exponential as shown in Figure 7.

'	 Renewal Process

A Renewal Process can be viewed as a series of trials

in which the probability of success, i.e., no-error, at a

,.	 certain trial is solely a function of the number of successes
#,k	

since the last failure, i.e., error. When an error finally

.,	 occurs, the process "starts" all over again, thus giving

rise to the name renewal. A renewal process is uniquely

f.	 defined by the EGD.

As noted in the discussion of the Pareto model, Berger

and Mandelbrot proposed that the EGD be described by a

Pareto distribution. In this model they as well as Sussman

further assumed statistical independence between successive

error gaps, thereby defining a renewal process. It is

obvious that this renewal process cannot be modeled by a

finite-state Markov chain for, as already demonstrated,

that would lead to an a -function which is asymptotically

exponential. We next show that a denumerably infinite-

state Markov model, termed a slowly spreading chain, does

allow modeling of this renewal process as well as more

general ones.

V. Slowly Spreading Markov Chains

Renewal processes have received considerable atten-

tion in the context of point processes, see e.g.,. Smith [12].

The development of discrete-time renewal processes is however

meager, except in relation to a class of denumerably infinite-

state Markov chains which Kemeny [13] calls slowly

spreading chains of the first kind. Representation

1I
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of the general, discrete renewal process via slowly

spreading Markov chains is now considered.

The denumerable state space is labeled by a

non-negative integer and the following mapping relates

the chain states to the states {0,1} of the renewal

process;
A 1 if i = 0

(	 )	 (23)
0 otherwise

If the discrete process (Zn) represents the state

sequence, the transition probabilities can be defined as

A

Pr ( Zn_ 
i	 ` Z

	= i.-1) = pi.
n-1

(24)
A

Pr( Zn_ 0	 1Z 
n-1 	 i	

_
 qi.

All other transitions have zero probability of occurrence.

This slowly spreading chain is shown in Figure B.

Letting,

i 
a4 Pk	(25)
k=1

it is assumed	 i# 0, i.e., all states are communicating.

If Don is defined as the probability of returning to

state 0 before reaching state n, then

on= q1 + p 1g2 + plp2g3 + - - - - - +plp2• 	 pn-lqn

= ql + 0 1q2 + 0 Zq3 + - - - - +fin-lqn	
(26)

n-1 n
iqi+l	 where	 1i=o	 0

The individual terms of the series can be interpreted

17
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as follows:

qProbability=C 	of reaching, X( Probability of returning
i i+l	 :state i from state 0	 from state i to state 0 •

(27)

Thus d i can be interpreted as the probability of reaching

state i when the process is making a round trip to state 0.

Also, since qk = 1 - pk and 
Sk = 0k-1 pk' 

substitution into

the preceding expression yields on = 1 - 0 n . Similarly

the probability of returning to any state i before reaching

a state n > i, Q in , can be expressed as

S
n

Q in - A. - S ; for i = 0, 1, 2, ....i

Here and throughout the paper S A 1. If h., is defined:	 o	 ii
as the probability of eventually returning to state i,

r
then for a slowly spreading chain

(28)

'- hii	 n-00	 in = 1 -	 0%	 for i	 0,	 1,	 2,	 ...	 (29)n"'•	
n

i

A denumerable chain is said to be recurrent if the proba-

bility of eventually returning, hii , is unity.	 For the

slowly spreading chain . this is equivalent to requiring

1 im	 = 0 as n-0.
n

V. Although certain, the return to state i can take a

very large number of steps. 	 To insure that on the average

this number of steps is finite it is necessary for the

chain to meet the more restrictive ergodic condition

which follows.	 Let M	 be the expected time for the first
00

return to state 0. 	 Then from Figure 8 it is seen that

19
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00

k'C °0 •

k=o
(31)

M00 _ ql + 7p1g2 + 3p1p2g3 + ------

a	 = ql + 2^ 1q2 + 30 2q3 + ------

a

U } k) (Sk - 0k+1)
k=o
a

^k .
k=o

(30)

c.tate 0 and hence all states i will be ergodic

if and only if

Referring to the transformation of chain states

into the states 0 and 1, given by equation (23), it is

clear that

S i = P(0 1 11),	 (32)

and

P(0i:11 1)	 i - 13 i+1 '	 (33)

Defining the rth moment of the mean recurrence time
by bk ( r)= E(Tkr) where Tk is the random duration needed
to go from state k back to state k. Kemeny, Snell and
Knapp [ 4 ] have shown that if bo (r) < a for some state So,
then b^ r)) < a for all states j. Consequently the condi-
tions which guarantee that the rth moment of state 0 is
finite are the same for all states. We make use of this
reasoning throughout the remainder of the paper.
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In other words ^, is the EGD of the chain and thisi
model allows the specification of a renewal process

having any desired EGD or equivalently any desired

Y-function.	 The only constraint on the specification

of	 is that	 S	 <
^-	 1

i=o

The slowly spreading model includes as special cases

the renewal models previously discussed. 	 For example

if we let 0 i =(1-p) lthe resulting model is just the BSC
having error rate p.	 Alternatively if we set Si= 1/ie
the result is the Pareto model. 	 Between these two ex-

tremes a renewal process with almost any desired q-function

can he specified.

VI	 Conditions on a for Ergodicity of Degree r.

The preceding discussion has centered around chains

with f i nite mean recurrence times or equivalently chains
with ergodic state probabilities.	 This is actually the

weakest ergodic condition which can be imposed With To

denoting the 0-state recurrence time. 	 Kemeny, Snell

and Knapp [ 1 4] define a chain to be ergodic of degree r
if bo (r)- E (Tor) < a but bo (r+l) = 0 .	 They prove the
notable fact	 that a finite-state Markov chain is ergodic

of degree infinity.	 Therefore more restrictive condi-

tions	 be imposed	 by	 the firstcan	 on a chain	 requiring	 r

moments of the 0-state recurrence time, T o , to be finite,

+1).: and E (Tor_ 0.

r
ti
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For a slowly spreading Markov chain to be ergodic

of at least degree 1, it was shown in the preceding

section that Z	 P (O l 1) < a.. The conditions
1=o 1 1=o

imposed on a(x) by ergodicity of degree r are now considered.

The rth moment of the 0-state recurrence time bo (=) is given

by

bo(r) = E [ Tor ] =E [ ( m+l) r]

a
_ E (m+l) rp (Oml 1)

M=O
a

_ E (m+l) 
r[ P (Om i 1) - P ( Om+l 1]	 (34)

M=O

a®

_ E C (m+1) r - mr ]P(Om i 1)
m=1

= F Um  + rm__.__ r r-1 m
r-2 

+--- ] -mr } P (0
m

1 1),
m=1	 1!	 2!

so that for large m

E (T 0 r ) N	 mr-lP (0'I 
1)•	 (35)

m=1

If the rth moment is required to be finite, then clearly

a

mr-1P (0, 1 1)  < a •	 (36)
m=1

There are thus two conditions for ergodicity of degree r

^3

I



I

t

s

Iia , Ilk I I 'r

00

r	 n

rn - l

I
1
t

1!

I
't

(37)

(38)

These conditions can be diroctly related to the

iis'ntptot is hohdvior of the Y -function. First observe

LhaL if m r-1 P (0m J .I.)	 ljm for all values of m > m*,

where m* is an! po-silive integer then condition (a) is

met, i.e., thW rth moment is finite if

P (0'1 1) < m .
	 (39)

Taking the natural, logarithm of both sides of this

expressior. and using the logarithmic variables x and y,

differentiating and changing sign, gives the result that

.'	 if Y (x) is greater than r for all values of x > x* = logem*,
than rth moment exists. Alternately if

_.. P .^ o fi.l •1.^ >
	 (40)

mr+ l
then the (r+1) th moment does not exist. Sufficient C=di-

tions to guarantee ergodicity of degree r are therefore

r s (x) < r+l.	 (41)

On the a (x) diagram the asymptotic behavior of a (x)

can be categorized as shown in Figure 9. An a -function,

which for x greater than some x*, always remains between

lines r and r+l, corresponds to a process having ergodicity

of degree r. Processes whose a —functions do not asymptote

to finite values will have infinite ergodic degree. For

example processes having a -functions which are asymptotically^	 P P	 YmP	 Y

f24
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logarithmic or exponential have infinite ergodic degree.

Processes having a -functions which asymptotically oscillate

cannot be classified by this procedure. The classifica-

tion of such processes will be considered in Section VIII.

VII Relation Between a(x) and the Recurrence Time

In Section I it was shown that

CO

E(Gn )	 = 1;	 P (O
m 

1 1)	 = R (42)
• M=O

From the plot of P (O m 1 1) vs. m shown in Figure 10 it is
observed that Rt is the area contained in the rectangles

of height P ( Om 1) and of unit width.	 P (Om 1 1)	 is defined

to be a continuous function of m which has the same values

as P(Om 11) when m is a positive integer. Referring to

Figure 10 the area in the first rectangle is always unity.x
` Therefore the area in the first rectangle plus the area

under P(Om 1l)	 for values of m > 1, will be a lower bound

x on the total area in all the rectangles, i.e.,

1+ 	 P(0m 1) dm < Rt . (43)

As indicated in the figure P(Om -l 11) is an upper bound on

• the rectangles.	 Therefore the area in the first rectangle

plus the area in the second rectangle plus the area under

P(O	 ^) for m > 2 will give an upper bound on the area in

all the rectangles, i.e.,

R	 - 1 + P(011) 	 +	 p ( O
m-1 1) dm . (44)

t	 2
^A

But	 _
i	 P (0m-1 l 1) dm =	 P (Om l 1) dm

2	 1

26
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1

f

I
I arld so

1 t	 P (om i) dm < R  < 1 + P (0 11) + J P (Om l 1) dm.
1	 1

(45)

r

The upper and lower bounds differ only by P(011)

a quantity less than 1. Since it can be expected that

P t> 10 for rea l channels and more usually R  > 103,

R is closely apprux imated by

Rt = 1	 2 
1) + i °° P ( Om , 1) dm.

1

The integral on the right-hand side can now be expressed

in terms of the logarithmic variables x and y. In the

x-y plane P (OM I 1) = ey and dm = exdx, so that

(y+x)j a P(Om ^l)dm = J°° a	 dx.	 (47)
1	 0

To help in understanding the meaning of the right-hand

integral a new function A(x) is defined as

A(x)	 J x Ca (µ) - 1dµ	 (48)
0

This is just the area between a(x) and 1 for values

between 0 and x. Recall that rx (x) = -dy/dx which

upon .substitution into the integral yields

A (x) = y (0) - y - x

or equivalently

y + x = y(0) - A(x). 	 (49)

z7

i

i
I
I
f
E

(46)
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0(Y+x) dx = c:y (0) 40 
e-A 

(x) dx
	

(50)
0	

' 0

Now x _ 0 when m = 1 and so Y(0) = log eP(011)  and

P (o (1) - eY (0) , The mean recurrence time is therefore

bounded as

1 + P(011)  
00
e-A (x) dx	 Rt< 1 + P (0 1) +P (0 1) r oe-A (x) dx,

0	 0

(51)

and is closely approximated by

Rt - 1 + P 2 1	 + P (0 1) J 
e -A (x) dx.	 (52)

0

Since both the upper and lower bounds are infinite when

the integral is infinite and finite when it is finite,

a necessary condition for the convergence of R  is that

06
e -A(x) dx<	 (53)

0

I
	

This is equivalent to requiring that the area A(x), be-

tween a (x) and 1, be greater than E > 0 for all values

of x greater than some value x*, i.e.,
d

A (x) > E > 0 for x > x*,,	 (54)

Moreover observing that this condition is satisfied if

the previous sufficient condition is satisfied, i.e.,

28
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^
co r-1— m
1 m	 P(O 1 1)dm < a ,r (56)

1
(57)

thj L -y(x) > 1 for x >x*,  the above condition on A (x)
is both necessary and sufficient.

' VIII	 A Necessary Condition on u For Frgodicity of Degree r.

Recall in the discussion of Section VI that ergodicity

of degree r required that the conditions given by equation

(40)be satisfied.	 This lead to a sufficient condition

on 0^ which guaranteed ergodicity of degree r, namely,

that r -- Y (x) < r+l.	 Following a procedure similar to
the one used in the preceding section, which lead to a

necessary and sufficient condition on a for ergodicity

of degree 1, a necessary and sufficient condition on a

for ergodicity of degree r will now be obtained.

Referring to Figure 11 the area in the rectangles

is equal to

M=l  mr-1P (Om 11) .	 (55)

once again the upper and lower bounds differ only b, r P(011)"
a quantity having value less than unity. If

both upper and lower bounds are finite, but if this integral

iF infinite, then so are both bounds. The convergence of

this integral is a necessary condition for ergodicity of at

least degree r.

Defining the auxiliary function A r (x) such that

A  (x) A jx a (4) -r idµ
0
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itis observed that Ar (x) is the area between the function

n(x) and the line r along the x-axis between 0 and x, as

shown in Figure 12. The necessary condition for the exis-

tence of the rth moment of the recurrence time and hence

ergodicity of at least degree r, is ttiat

 -Aar (x) dx

o	 (5B)

Consequently necessary and sufficient conditions for ergodi-

city of degree r are

Ar (x) > 0	 for x > xl*

Ar+1(x) < 0 for x > x2*	 (59)

3
where xl* and x2* are any positive real numbers.

Summarizing, the n(x) diagram can be used to determine

the degree of ergodicity of a process as fellows. If the

area between a (x) and each of the lines 1, 2, ... , r is

positive, but the area between ot(x) and the line r+1 is
Y

negative, then the process is ergodic of degree r. In order

t	
to guarantee a finite mean recurrence time R t , the process

must be ergodic of at least degree 1. For processes that

satisfy this condition, R can be closely approximated in
t

terns of the area A (x) between or (x) and 1.

32
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IX Data Analysis

To gain a better understanding of the behavior of the

n- function of real channels three troposcatter channels are

examined. 	 we were particularly interested in the behavior

of u(x) for large values of x, i.e. for large m, necessi-

tating the examination of very long error sequences. The

largest sequence examined was approximately 7 X 10  bits

which in comparison to previous analyses is indeed long.

The three channels are labeled C1, C2, and C3. Some

general features of these channels follow:

t

Cl.	 C2	 C3

307,000	 614,000	 100000000

2.355x10 -2	1.347x10-5	2.949x10-5

0.41	 102	 119.76

7,635,632 378,266,112 7,125,322,352

179,828	 50, 936	 210,153

42.46	 74263	 33905

10088	 11,306,822	 3,585,916

Bits per second

Error rate

Duration of run (min)

Total number of bits

Total number of errors

Mean recurrence time

Longest gap length

The a-function for these three channels is shown in

Figures 13-15. Channels Cl and C2 appear to exhibit exponen-

tial or nearly exponential asymptotic behavior which suggests

they might be represented by finite-state Markov models.

Channel C3, however, exhibits a most unusual behavior. Its

a -function continues to vary from vety small values to large

values and back again. It appears to be barely ergodic, though

the area A (x) between car (x) and the line x = 1 is still positive

for m > 10 6 . Such a channel clearly cannot be represented

2 The data was provided by the United States Army Electronic
Command, Fort Monmouth New Jersey, in March 1970.
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by finite-state models or the Pareto model, but could be

represented by the slowly spreading chain model discussed

in Section V provided of course that error gaps were not

correlated.

X.	 Summary and Conclusions

: The a-function is capable of revealing a number of

interesting properties of real communication channels and of

uncovering some of trio underlying behavior of channel models.

From the a-diagramram of a real channel it is possible to obtaing	 p

an indication of its degree of ergodicity. 	 Moreover since it

was shown that finite-state models lead to a-functions having

an exponential asymptotic behavior, the of-function can be

used to determine when 	 finite-state	 den	 nl	 model can or cannot

be expected to characterize a channel.

As a consequence	 - of our investigation of the a function

of models previously developed to characterize real channel

behavior, it was discovered that certain a -function behavior

could not be described, even though real channels can exhibit

such behavior as evidenced by channel C3 investigated in Sec-

tion IX.	 This lead to the consideration of a slowly spreading

Markov model capable of exhibiting almost any a-function

behavior desired. A model consisting of two coupled, infinite-

state, slowly spreading Markov chains, which is capable of

c accounting for a wide variety of properties of real channels,

has been developed by the authors.	 This will be a subject of

a future paper.
Mp

Finally it should be pointed out that though the present

analysis has been directed toward the representation of error

sequences, the results are applicable to any binary, discrete-

time random processes; for examFle those generated by binary

data sources.

r .`
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